Source code for k_means_constrained.sklearn_import.cluster.k_means_

"""K-means clustering"""

# Authors: Gael Varoquaux <gael.varoquaux@normalesup.org>
#          Thomas Rueckstiess <ruecksti@in.tum.de>
#          James Bergstra <james.bergstra@umontreal.ca>
#          Jan Schlueter <scikit-learn@jan-schlueter.de>
#          Nelle Varoquaux
#          Peter Prettenhofer <peter.prettenhofer@gmail.com>
#          Olivier Grisel <olivier.grisel@ensta.org>
#          Mathieu Blondel <mathieu@mblondel.org>
#          Robert Layton <robertlayton@gmail.com>
# License: BSD 3 clause

import warnings

import numpy as np
import scipy.sparse as sp
from k_means_constrained.sklearn_import.base import BaseEstimator, ClusterMixin, TransformerMixin
from six import string_types
from k_means_constrained.sklearn_import.metrics.pairwise import euclidean_distances, pairwise_distances_argmin_min
from k_means_constrained.sklearn_import.utils.validation import check_array, check_random_state, FLOAT_DTYPES, \
    check_is_fitted
from k_means_constrained.sklearn_import.utils.extmath import row_norms, stable_cumsum
from k_means_constrained.sklearn_import.utils.sparsefuncs import mean_variance_axis

from k_means_constrained.sklearn_import.cluster import _k_means


###############################################################################
# Initialization heuristic


def _k_init(X, n_clusters, x_squared_norms, random_state, n_local_trials=None):
    """Init n_clusters seeds according to k-means++

    Parameters
    -----------
    X : array or sparse matrix, shape (n_samples, n_features)
        The data to pick seeds for. To avoid memory copy, the input data
        should be double precision (dtype=np.float64).

    n_clusters : integer
        The number of seeds to choose

    x_squared_norms : array, shape (n_samples,)
        Squared Euclidean norm of each data point.

    random_state : numpy.RandomState
        The generator used to initialize the centers.

    n_local_trials : integer, optional
        The number of seeding trials for each center (except the first),
        of which the one reducing inertia the most is greedily chosen.
        Set to None to make the number of trials depend logarithmically
        on the number of seeds (2+log(k)); this is the default.

    Notes
    -----
    Selects initial cluster centers for k-mean clustering in a smart way
    to speed up convergence. see: Arthur, D. and Vassilvitskii, S.
    "k-means++: the advantages of careful seeding". ACM-SIAM symposium
    on Discrete algorithms. 2007

    Version ported from http://www.stanford.edu/~darthur/kMeansppTest.zip,
    which is the implementation used in the aforementioned paper.
    """
    n_samples, n_features = X.shape

    centers = np.empty((n_clusters, n_features), dtype=X.dtype)

    assert x_squared_norms is not None, 'x_squared_norms None in _k_init'

    # Set the number of local seeding trials if none is given
    if n_local_trials is None:
        # This is what Arthur/Vassilvitskii tried, but did not report
        # specific results for other than mentioning in the conclusion
        # that it helped.
        n_local_trials = 2 + int(np.log(n_clusters))

    # Pick first center randomly
    center_id = random_state.randint(n_samples)
    if sp.issparse(X):
        centers[0] = X[center_id].toarray()
    else:
        centers[0] = X[center_id]

    # Initialize list of closest distances and calculate current potential
    closest_dist_sq = euclidean_distances(
        centers[0, np.newaxis], X, Y_norm_squared=x_squared_norms,
        squared=True)
    current_pot = closest_dist_sq.sum()

    # Pick the remaining n_clusters-1 points
    for c in range(1, n_clusters):
        # Choose center candidates by sampling with probability proportional
        # to the squared distance to the closest existing center
        rand_vals = random_state.random_sample(n_local_trials) * current_pot
        candidate_ids = np.searchsorted(stable_cumsum(closest_dist_sq),
                                        rand_vals)

        # Compute distances to center candidates
        distance_to_candidates = euclidean_distances(
            X[candidate_ids], X, Y_norm_squared=x_squared_norms, squared=True)

        # Decide which candidate is the best
        best_candidate = None
        best_pot = None
        best_dist_sq = None
        for trial in range(n_local_trials):
            # Compute potential when including center candidate
            new_dist_sq = np.minimum(closest_dist_sq,
                                     distance_to_candidates[trial])
            new_pot = new_dist_sq.sum()

            # Store result if it is the best local trial so far
            if (best_candidate is None) or (new_pot < best_pot):
                best_candidate = candidate_ids[trial]
                best_pot = new_pot
                best_dist_sq = new_dist_sq

        # Permanently add best center candidate found in local tries
        if sp.issparse(X):
            centers[c] = X[best_candidate].toarray()
        else:
            centers[c] = X[best_candidate]
        current_pot = best_pot
        closest_dist_sq = best_dist_sq

    return centers


###############################################################################
# K-means batch estimation by EM (expectation maximization)

def _validate_center_shape(X, n_centers, centers):
    """Check if centers is compatible with X and n_centers"""
    if len(centers) != n_centers:
        raise ValueError('The shape of the initial centers (%s) '
                         'does not match the number of clusters %i'
                         % (centers.shape, n_centers))
    if centers.shape[1] != X.shape[1]:
        raise ValueError(
            "The number of features of the initial centers %s "
            "does not match the number of features of the data %s."
            % (centers.shape[1], X.shape[1]))


def _tolerance(X, tol):
    """Return a tolerance which is independent of the dataset"""
    if sp.issparse(X):
        variances = mean_variance_axis(X, axis=0)[1]
    else:
        variances = np.var(X, axis=0)
    return np.mean(variances) * tol


def _labels_inertia_precompute_dense(X, x_squared_norms, centers, distances):
    """Compute labels and inertia using a full distance matrix.

    This will overwrite the 'distances' array in-place.

    Parameters
    ----------
    X : numpy array, shape (n_sample, n_features)
        Input data.

    x_squared_norms : numpy array, shape (n_samples,)
        Precomputed squared norms of X.

    centers : numpy array, shape (n_clusters, n_features)
        Cluster centers which data is assigned to.

    distances : numpy array, shape (n_samples,)
        Pre-allocated array in which distances are stored.

    Returns
    -------
    labels : numpy array, dtype=np.int, shape (n_samples,)
        Indices of clusters that samples are assigned to.

    inertia : float
        Sum of distances of samples to their closest cluster center.

    """
    n_samples = X.shape[0]

    # Breakup nearest neighbor distance computation into batches to prevent
    # memory blowup in the case of a large number of samples and clusters.
    # TODO: Once PR #7383 is merged use check_inputs=False in metric_kwargs.
    labels, mindist = pairwise_distances_argmin_min(
        X=X, Y=centers, metric='euclidean', metric_kwargs={'squared': True})
    # cython k-means code assumes int32 inputs
    labels = labels.astype(np.int32)
    if n_samples == distances.shape[0]:
        # distances will be changed in-place
        distances[:] = mindist
    inertia = mindist.sum()
    return labels, inertia


def _labels_inertia(X, x_squared_norms, centers,
                    precompute_distances=True, distances=None):
    """E step of the K-means EM algorithm.

    Compute the labels and the inertia of the given samples and centers.
    This will compute the distances in-place.

    Parameters
    ----------
    X : float64 array-like or CSR sparse matrix, shape (n_samples, n_features)
        The input samples to assign to the labels.

    x_squared_norms : array, shape (n_samples,)
        Precomputed squared euclidean norm of each data point, to speed up
        computations.

    centers : float array, shape (k, n_features)
        The cluster centers.

    precompute_distances : boolean, default: True
        Precompute distances (faster but takes more memory).

    distances : float array, shape (n_samples,)
        Pre-allocated array to be filled in with each sample's distance
        to the closest center.

    Returns
    -------
    labels : int array of shape(n)
        The resulting assignment

    inertia : float
        Sum of distances of samples to their closest cluster center.
    """
    n_samples = X.shape[0]
    # set the default value of centers to -1 to be able to detect any anomaly
    # easily
    labels = -np.ones(n_samples, np.int32)
    if distances is None:
        distances = np.zeros(shape=(0,), dtype=X.dtype)
    # distances will be changed in-place
    if sp.issparse(X):
        inertia = _k_means._assign_labels_csr(
            X, x_squared_norms, centers, labels, distances=distances)
    else:
        if precompute_distances:
            return _labels_inertia_precompute_dense(X, x_squared_norms,
                                                    centers, distances)
        inertia = _k_means._assign_labels_array(
            X, x_squared_norms, centers, labels, distances=distances)
    return labels, inertia


def _init_centroids(X, k, init, random_state=None, x_squared_norms=None,
                    init_size=None):
    """Compute the initial centroids

    Parameters
    ----------

    X : array, shape (n_samples, n_features)

    k : int
        number of centroids

    init : {'k-means++', 'random' or ndarray or callable} optional
        Method for initialization

    random_state : int, RandomState instance or None, optional, default: None
        If int, random_state is the seed used by the random number generator;
        If RandomState instance, random_state is the random number generator;
        If None, the random number generator is the RandomState instance used
        by `np.random`.

    x_squared_norms :  array, shape (n_samples,), optional
        Squared euclidean norm of each data point. Pass it if you have it at
        hands already to avoid it being recomputed here. Default: None

    init_size : int, optional
        Number of samples to randomly sample for speeding up the
        initialization (sometimes at the expense of accuracy): the
        only algorithm is initialized by running a batch KMeans on a
        random subset of the data. This needs to be larger than k.

    Returns
    -------
    centers : array, shape(k, n_features)
    """
    random_state = check_random_state(random_state)
    n_samples = X.shape[0]

    if x_squared_norms is None:
        x_squared_norms = row_norms(X, squared=True)

    if init_size is not None and init_size < n_samples:
        if init_size < k:
            warnings.warn(
                "init_size=%d should be larger than k=%d. "
                "Setting it to 3*k" % (init_size, k),
                RuntimeWarning, stacklevel=2)
            init_size = 3 * k
        init_indices = random_state.randint(0, n_samples, init_size)
        X = X[init_indices]
        x_squared_norms = x_squared_norms[init_indices]
        n_samples = X.shape[0]
    elif n_samples < k:
        raise ValueError(
            "n_samples=%d should be larger than k=%d" % (n_samples, k))

    if isinstance(init, string_types) and init == 'k-means++':
        centers = _k_init(X, k, random_state=random_state,
                          x_squared_norms=x_squared_norms)
    elif isinstance(init, string_types) and init == 'random':
        seeds = random_state.permutation(n_samples)[:k]
        centers = X[seeds]
    elif hasattr(init, '__array__'):
        # ensure that the centers have the same dtype as X
        # this is a requirement of fused types of cython
        centers = np.array(init, dtype=X.dtype)
    elif callable(init):
        centers = init(X, k, random_state=random_state)
        centers = np.asarray(centers, dtype=X.dtype)
    else:
        raise ValueError("the init parameter for the k-means should "
                         "be 'k-means++' or 'random' or an ndarray, "
                         "'%s' (type '%s') was passed." % (init, type(init)))

    if sp.issparse(centers):
        centers = centers.toarray()

    _validate_center_shape(X, k, centers)
    return centers


class KMeans(BaseEstimator, ClusterMixin, TransformerMixin):
    """K-Means clustering

    Read more in the :ref:`User Guide <k_means>`.

    Parameters
    ----------

    n_clusters : int, optional, default: 8
        The number of clusters to form as well as the number of
        centroids to generate.

    init : {'k-means++', 'random' or an ndarray}
        Method for initialization, defaults to 'k-means++':

        'k-means++' : selects initial cluster centers for k-mean
        clustering in a smart way to speed up convergence. See section
        Notes in k_init for more details.

        'random': choose k observations (rows) at random from data for
        the initial centroids.

        If an ndarray is passed, it should be of shape (n_clusters, n_features)
        and gives the initial centers.

    n_init : int, default: 10
        Number of time the k-means algorithm will be run with different
        centroid seeds. The final results will be the best output of
        n_init consecutive runs in terms of inertia.

    max_iter : int, default: 300
        Maximum number of iterations of the k-means algorithm for a
        single run.

    tol : float, default: 1e-4
        Relative tolerance with regards to inertia to declare convergence

    precompute_distances : {'auto', True, False}
        Precompute distances (faster but takes more memory).

        'auto' : do not precompute distances if n_samples * n_clusters > 12
        million. This corresponds to about 100MB overhead per job using
        double precision.

        True : always precompute distances

        False : never precompute distances

    verbose : int, default 0
        Verbosity mode.

    random_state : int, RandomState instance or None, optional, default: None
        If int, random_state is the seed used by the random number generator;
        If RandomState instance, random_state is the random number generator;
        If None, the random number generator is the RandomState instance used
        by `np.random`.

    copy_x : boolean, default True
        When pre-computing distances it is more numerically accurate to center
        the data first.  If copy_x is True, then the original data is not
        modified.  If False, the original data is modified, and put back before
        the function returns, but small numerical differences may be introduced
        by subtracting and then adding the data mean.

    n_jobs : int
        The number of jobs to use for the computation. This works by computing
        each of the n_init runs in parallel.

        If -1 all CPUs are used. If 1 is given, no parallel computing code is
        used at all, which is useful for debugging. For n_jobs below -1,
        (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one
        are used.

    algorithm : "auto", "full" or "elkan", default="auto"
        K-means algorithm to use. The classical EM-style algorithm is "full".
        The "elkan" variation is more efficient by using the triangle
        inequality, but currently doesn't support sparse data. "auto" chooses
        "elkan" for dense data and "full" for sparse data.

    Attributes
    ----------
    cluster_centers_ : array, [n_clusters, n_features]
        Coordinates of cluster centers

    labels_ :
        Labels of each point

    inertia_ : float
        Sum of distances of samples to their closest cluster center.

    Examples
    --------

    >>> from sklearn.cluster import KMeans
    >>> import numpy as np
    >>> X = np.array([[1, 2], [1, 4], [1, 0],
    ...               [4, 2], [4, 4], [4, 0]])
    >>> kmeans = KMeans(n_clusters=2, random_state=0).fit(X)
    >>> kmeans.labels_
    array([0, 0, 0, 1, 1, 1], dtype=int32)
    >>> kmeans.predict([[0, 0], [4, 4]])
    array([0, 1], dtype=int32)
    >>> kmeans.cluster_centers_
    array([[ 1.,  2.],
           [ 4.,  2.]])

    See also
    --------

    MiniBatchKMeans
        Alternative online implementation that does incremental updates
        of the centers positions using mini-batches.
        For large scale learning (say n_samples > 10k) MiniBatchKMeans is
        probably much faster than the default batch implementation.

    Notes
    ------
    The k-means problem is solved using Lloyd's algorithm.

    The average complexity is given by O(k n T), were n is the number of
    samples and T is the number of iteration.

    The worst case complexity is given by O(n^(k+2/p)) with
    n = n_samples, p = n_features. (D. Arthur and S. Vassilvitskii,
    'How slow is the k-means method?' SoCG2006)

    In practice, the k-means algorithm is very fast (one of the fastest
    clustering algorithms available), but it falls in local minima. That's why
    it can be useful to restart it several times.

    """

    def __init__(self, n_clusters=8, init='k-means++', n_init=10,
                 max_iter=300, tol=1e-4, precompute_distances='auto',
                 verbose=0, random_state=None, copy_x=True,
                 n_jobs=1, algorithm='auto'):

        self.n_clusters = n_clusters
        self.init = init
        self.max_iter = max_iter
        self.tol = tol
        self.precompute_distances = precompute_distances
        self.n_init = n_init
        self.verbose = verbose
        self.random_state = random_state
        self.copy_x = copy_x
        self.n_jobs = n_jobs
        self.algorithm = algorithm

    def _check_fit_data(self, X):
        """Verify that the number of samples given is larger than k"""
        X = check_array(X, accept_sparse='csr', dtype=[np.float64, np.float32])
        if X.shape[0] < self.n_clusters:
            raise ValueError("n_samples=%d should be >= n_clusters=%d" % (
                X.shape[0], self.n_clusters))
        return X

    def _check_test_data(self, X):
        X = check_array(X, accept_sparse='csr', dtype=FLOAT_DTYPES)
        n_samples, n_features = X.shape
        expected_n_features = self.cluster_centers_.shape[1]
        if not n_features == expected_n_features:
            raise ValueError("Incorrect number of features. "
                             "Got %d features, expected %d" % (
                                 n_features, expected_n_features))

        return X

    def fit(self, X, y=None):
        """Compute k-means clustering.

        Parameters
        ----------
        X : array-like or sparse matrix, shape=(n_samples, n_features)
            Training instances to cluster.
        """
        # Added to remove scikit-learn internal dependenceies
        raise NotImplemented

    def fit_predict(self, X, y=None):
        """Compute cluster centers and predict cluster index for each sample.

        Convenience method; equivalent to calling fit(X) followed by
        predict(X).

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape = [n_samples, n_features]
            New data to transform.

        Returns
        -------
        labels : array, shape [n_samples,]
            Index of the cluster each sample belongs to.
        """
        return self.fit(X).labels_

    def fit_transform(self, X, y=None):
        """Compute clustering and transform X to cluster-distance space.

        Equivalent to fit(X).transform(X), but more efficiently implemented.

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape = [n_samples, n_features]
            New data to transform.

        Returns
        -------
        X_new : array, shape [n_samples, k]
            X transformed in the new space.
        """
        # Currently, this just skips a copy of the data if it is not in
        # np.array or CSR format already.
        # XXX This skips _check_test_data, which may change the dtype;
        # we should refactor the input validation.
        X = self._check_fit_data(X)
        return self.fit(X)._transform(X)

    def transform(self, X):
        """Transform X to a cluster-distance space.

        In the new space, each dimension is the distance to the cluster
        centers.  Note that even if X is sparse, the array returned by
        `transform` will typically be dense.

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape = [n_samples, n_features]
            New data to transform.

        Returns
        -------
        X_new : array, shape [n_samples, k]
            X transformed in the new space.
        """
        check_is_fitted(self, 'cluster_centers_')

        X = self._check_test_data(X)
        return self._transform(X)

    def _transform(self, X):
        """guts of transform method; no input validation"""
        return euclidean_distances(X, self.cluster_centers_)

    def predict(self, X):
        """Predict the closest cluster each sample in X belongs to.

        In the vector quantization literature, `cluster_centers_` is called
        the code book and each value returned by `predict` is the index of
        the closest code in the code book.

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape = [n_samples, n_features]
            New data to predict.

        Returns
        -------
        labels : array, shape [n_samples,]
            Index of the cluster each sample belongs to.
        """
        check_is_fitted(self, 'cluster_centers_')

        X = self._check_test_data(X)
        x_squared_norms = row_norms(X, squared=True)
        return _labels_inertia(X, x_squared_norms, self.cluster_centers_)[0]

    def score(self, X, y=None):
        """Opposite of the value of X on the K-means objective.

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape = [n_samples, n_features]
            New data.

        Returns
        -------
        score : float
            Opposite of the value of X on the K-means objective.
        """
        check_is_fitted(self, 'cluster_centers_')

        X = self._check_test_data(X)
        x_squared_norms = row_norms(X, squared=True)
        return -_labels_inertia(X, x_squared_norms, self.cluster_centers_)[1]